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INTRODUCTION

The stress distribution in gun tubes is generally computed by
using the classical Lamé solution for thick walled cylinders.
Thermal stresses arc calculated for temperaturce distributions that
are assumed to be legarithmic [, This approach does not allow for
consideration of the effects of changes in cross section nor for the
condition that the internal pressure is applied over a limited and
changing region of the tube., Neither does it permit the considera-
tion of transient temperature distribution that may occur in a
firing cycle [2], The effects of non~uniforir conditions along the
axis and a traasient temperature distribution changes the problen
from the classical one dimensional problem of Lame” to a problem in
two dimensions that does not in geuneral have an analytical soluticn,

An approach with some success for finding numerical solutions to
two dimensional problems in elasticity is the use of finite differ-
ences. Southswrell [3] was the first to do this successfully by using
a relaxation technique. More recently methods using block relaxation

and direct solution of the system of difference equations hLave been
used [4, 5, 6, 7, 8].

In this paper, a direct solution for the system of difference
equations is used., Special handling of the coefficient matrix in
the computation routine makes possible the handling of very large
systens of cquations.
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DLVELOPMINT OF EQUATIONS:

The differential equations governing the behavior of a gun tube
are developed in terras of the radial and axfal displacement which are
desipgnated u and v respectively,

The equations of equilibrium for cfrcular symmetry in ﬁerms of
stress and with no body forces arc: {[10]
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Figure 1 shows a cross—scction of a typical tube with pressure
loading, The coordinate axis and stress notations arc given,

The stress
given by lookes

strain rclations are assumed to be linear and are

law,

Or = e 4+ 20y = (31 + 20)A
0g = de + 26c, - (32 + 20)A (3)
o, = Ae + 2Ge, - (3 + 20)A
Tz = OVrz
where T
A = [fa(8)do
To

A and G are Lame constants and o is the coefficient of linear
expansion, Each is assumed to be temperature dependent. Tp and T
are the initial and current temperatures respectively.

The strains are defined in temms of displacements by,

SR L A A A

T oz
er "2.!’.‘*‘.?.‘:’.- e = Cr"" Ee (4)
oz Ir

Dimensionless variables are defined by the expressions

u=au

weu aw ,

r = af £ < £ <1

z = bn 0 <n<l (9
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where g, depends on the bore rxadius, a i
and b the length of the tube, Equations
substituted into equations (1) and (2).
in U and ¥V are obtaincd.

s a characteristic radius
(3), (4) and (5) are
The following two equations

a AL+ G 3% a 36 2§ a D)
b A+ 2C 3fan B(x + 2G) 9E° o€ b(» + 26) oF
3% . 325 . a2 G 325 . '
m Y Y w20 w2 Y yvaxc”k
A X 2G 3G\ au a? 3G au
A A 26 4 236G} du 3G |, 3u
(c Y Yk az) 3¢ T DLI(A ¥ 26) on  an
1 1 32 _ A _ 26\ = _1 3 )
% + 20 (c 3 T 7 | Yt TaIc 3p [GA+204]
, (6)
G % . a2 3% . _ 1 G . 36\
X + 2C L2 ®Z 3n? »+26 e v Bl 3

2 e 25
a 2y 3G w a() + G) 34u
B2Cx + 20) ( n 2?5) am ¥ SOy + 20 acan T
BCA + 20) on 2 b0+ 20 |t € 3t| an
a 1 3% = _ a 3
PO+ 30 £ an VT TO+ 20 an L[GAF2004]

Equations (6) and (7), must te satisfied

@)

throughout the tube and

are solved subject to the appropriate conditions on the boundary,

FINITE DIFFEREHCE ANALOG

The finite difference analog for th
and (7) is obtained by replacing derivat
approximations, To minimize the truncat
difference approximation is used through
spacing on £ 4s h = 1/M, and on n it {s
second and cross derivatives at a nodal
reglon of the tube cross section are:

c differential equattions (6)
ives with finite difference
ion error, a central

out, The dimensionless

k = 1/N, The first,

point (i, §) tn the open
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gi:n = o Gy g = Bion, g - T3l
#Byop,q-1) (10)

1f approxinmations of the form in equations (8), (9) and (10) are
substituted into cquations (6) and (7), two algcbraic equations of
the following form are obtained for each nodal point within the
repion,

C1,k “;—1,5-1 + €2k Ug-1,3-1 * C3,1 Fg-1,5 + €4k Uiy,
+ C5,x ¥i-1,3+1 % Co,k u1-;1,j+1 + Cyk ¥, 3-1* Cg,k U3 41
Co,k W1, * Cro,k U1,y + C11,k 9y, 441 + Cl2,k U4,4+1
€13,k Y141,5-1 * Cra,k Ypa1,9-1 ¥ C1s,k Vi41,
+ Ci6,k Gi+1.j + €17,k Y41, 5+ + €18, Vi+l, i+l
= Cppx kv, (11)

vwhere the coefficients C1 y are functions of material properties,

and will, because of their dependence on temperature, be functions
of position. In the solution of the problem the material properties
are approximated by polynomials in temperature and their derivatives
with respect to the space variables are obtained by using a central
difference approximaticn,

The set of equations (11) will be equal in number to twice the
number of nodal points within the region. The equations will
include values of u and ¥ at each of the nodal points inside the
region and also values of u and ¥ at nodal points on the boundary
line surrounding the region, At each nodal point on the boundary
line, two algebraic equations which express the boundary conditions
in finite difference form are written., When combined with cquations
(11) for the interior a solvable set of simultaneous equations in
discrete values of U and W are obtained,

BOUNDARY EQUATIONS:

Counditions at each nodal point along the boundary will be in the
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form of stress orx displacement, and in souwe Instances it may be
poseihlc to define a line of symmatry that can form a boundary line.
Boundary equations are gencrated for each type of condition and the
program i3 written so that at each boundary point any onec of the
thrae conditions can be prescribed.

To best accommodate the threc possible conditions at the
boundary the nodal spacing 1s chosen so that the actual boundary of
the region always lies midway between nodal lines, as illustrated by
figure 2, 7Two boundary equations must bLe written for each of the
nodal points on the outer perimeter. The nature of the equations
will be such as to describe the condition at the boundary that is
closest to the nodal point, Examples chosen from the bottom side of
the region (shown fn figure 2) will be {1lustratid., Suppose first
that displacemcnts at the nodal line i along the bottom beundary are
given and are dencted by u, and Ve Then from the central difference
approximation, .

3 G+ Wi ) = vy ' (12a)
a - -
2 (ui'1 + ui.z) - uy (12b)

If the stresses at the boundary corresponding to the 1th‘nodal line
are given, then from equations (3) and (4)

x% + 8 .g.:.) + 25.%% - (31 + 20)A = oy (13a)
cla + .‘rlg) - T (13b)
or z

" The following difference equations follow,

o - - ' L 1 26
o (Wi+1,2 7 Vie1,2 T Wiel,1 * Wie1,1) + = (1 + T)

- - 1
x (ug,2 = ug,1) + HGnY) (ug,1+ug0) =0l o

2G
G+ A (143)
-a. (u + 3 - o ) 1 x
4bh “Yi+1,2 T Ug4q ) T Y10 T Y-3,0) t R
- ’ T
- - Xre
(winz wiol) T (141))
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The symmetry condition along a boundary is givenly a mirror reflec-
tion in that boundary. For the point at the i:P' nodal line along
the bottom boundary

51.2 - 51.1 =0 (15a)
ug gt ;1,1 - 0 (15b)
Sets of equations similar to equations (12), (14) or (15) are
written for each point along the nodal boundary line, An exception
occurs for a corner point when displacement or stress is prescribed
at the corncr. For displacement given at a cormer, the boundary
equation ¢« ohtained by setting the displacement equal to the
average of the four neighboring points, A stress cundition at a
comer is handled by prescribing the stiess on the slant surface of
a triangular section with sides h/2 by k/2 as {1llustrated in figure
3, Stresses o, and T, 8re written in terms of the boundary
stresses which are in turn approximated by finite differences.

An interior cormer such as shown in figure 4 is handled by
requiring the normal stress on each boundary be satisfied., The
shear stress in the corner is ignored, Lach boundary equation is
of a form that can be written in the general form of equation (11).
Thus all equations of the region and the boundary can be written

in the format cof equation (11). Two equations are written at cach
nodal point, be it interior or boundary point, and this defines a
systen of alpebraic equations that is equal {n number to the

number of discrete values of u and w,

SOLUTION OF ALGEBRAIC SYSTEM -

The system of algebraic equations {s arranged fn an order
prescribed by varying § and then i, {.c., the first two equations
of the set are written for the nodal point at (1, 1), the next two
for (1, 2) etc, Equations for points on nodal line 1 will
in gencral involve points on nodal lines at { = 1 and i + 1. Thus,
the equations arranged in the above order lecads to a banded
coefficient matrix on the unknowns u and W, Feor executing the
solution of this system on a digital computer the matrix is
partitioned on the basis of values of i, Then, in an elimination
sequence, it is possible to deal only with the three consecutive
sub matrices that correspondsto equations for points on the nodal
lines { ~ 1, 1, and { + 1, These matrices are brought into core,
the elimination operations performed and then the core updated for
the next elimination sequence, This cnables a couputer with
limited core capacity to handle very large systems without great
sacrifice i{a time for loading and ualoading coxc. It also has
the effect of limiting only the nodal spacing in the radial
direction and giving the capacity for very large spacing in the
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axial or z directions, Yor the IBM 7044 system with 32k core
memory and unlimited disk storape, a system with 30 nodal lines
in the radial direction, two equations for each point, and any
number in the axial direction can be handled.

The computational sequence is handled in three independent
steps, -Flrst the cocfficient matyix is gencrateds, This involves
computing the cofficients Cyp for each of the equations in the sct
and storing them in a way to take advantage of the rclatively narrow
band width of the matrix, Next, the equations are solved for the
unknown values of U and ¥ by Gaussian elimination. The elimination

‘ routine is carried out with only a portion of the coefficient
- matrix in core at any tine,

Finally with the displacementsknown, a separate program
evaluaies the stresses by using central difference approximations
for the strains.

NUMERLCAL EXAMPLL S

The problem chosen for sample computation is a 3J0MM gun tube
of very light wefght design. Internal pressures are not high but
the light weight barrel gets hot very quickly in a sustained
burst and there s real danger of catastrophic failure. A sketch
of a cross-section of the tube is given In figure 1.

The physical properties of the barrel are given below
for ambient tewperature, These have been taken as constants for
the results  reported herxe,

A = 1,15 x 107 psi

G = 1,73 x 107 psi

o = 6,0 x 1075 in/in/°F
Computations have been made for the following cases.

l. Tube at ambient temperature with internal pressure of:

a., 6000 psi (projectile at 21")
b, 3700 psi (projectile at 36")

2. Tube at 8 milliseconds after the 20th round is fired
with internal pressure of:

a8, 6000 psi

b, 3700 psi
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The transient temperature used for cases 2 (a) and (b) is
given in figure 5.

Results of the stress computations are giiven in fipures 5, 7,
and 8 TFipgure 6 is a plot of the three normal stresses versus
radius for cases (la) and (2a) at a spot 21" from the breech.
Figure 7 shows rusults for cases (1b) and (lc) at 29" from the
breech, Conditions at diffcrent positions alony the barrel are
siwflar in general form hut will differ in magnitude., This is
illustrated {n fipure 8 where the tanpential stress {s plotted
against distance from the breech for cases (la) and (2a).

In general, the results are as expected, Four the case of
anbient tcwperature, the values are very nearly the same as given
by the classical theory, TFor the transient temperature condition,
numerical values have not been checlied against other methods of
calculation but the gencral trend of the tangential stress scems
correct, Perhaps less expected {s the very high axial stress in
the tube shown by o, in the curves,
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